Sprouty1 Regulates Reversible Quiescence of a Self-Renewing Adult Muscle Stem Cell Pool during Regeneration
نویسندگان
چکیده
Satellite cells are skeletal muscle stem cells capable of self-renewal and differentiation after transplantation, but whether they contribute to endogenous muscle fiber repair has been unclear. The transcription factor Pax7 marks satellite cells and is critical for establishing the adult satellite cell pool. By using a lineage tracing approach, we show that after injury, quiescent adult Pax7(+) cells enter the cell cycle; a subpopulation returns to quiescence to replenish the satellite cell compartment, while others contribute to muscle fiber formation. We demonstrate that Sprouty1 (Spry1), a receptor tyrosine kinase signaling inhibitor, is expressed in quiescent Pax7(+) satellite cells in uninjured muscle, downregulated in proliferating myogenic cells after injury, and reinduced as Pax7(+) cells re-enter quiescence. We show that Spry1 is required for the return to quiescence and homeostasis of the satellite cell pool during repair. Our results therefore define a role for Spry1 in adult muscle stem cell biology and tissue repair.
منابع مشابه
FOXO3 Promotes Quiescence in Adult Muscle Stem Cells during the Process of Self-Renewal
Skeletal muscle stem cells, or "satellite cells" (SCs), are required for the regeneration of damaged muscle tissue. Although SCs self-renew during regeneration, the mechanisms that govern SC re-entry into quiescence remain elusive. We show that FOXO3, a member of the forkhead family of transcription factors, is expressed in quiescent SCs (QSCs). Conditional deletion of Foxo3 in QSCs impairs sel...
متن کاملSix1 regulates stem cell repair potential and self-renewal during skeletal muscle regeneration
Satellite cells (SCs) are stem cells that mediate skeletal muscle growth and regeneration. Here, we observe that adult quiescent SCs and their activated descendants expressed the homeodomain transcription factor Six1. Genetic disruption of Six1 specifically in adult SCs impaired myogenic cell differentiation, impaired myofiber repair during regeneration, and perturbed homeostasis of the stem ce...
متن کاملInjury-stimulated and self-restrained BMP signaling dynamically regulates stem cell pool size during Drosophila midgut regeneration.
Many adult organs rely on resident stem cells to maintain homeostasis. Upon injury, stem cells increase proliferation, followed by lineage differentiation to replenish damaged cells. Whether stem cells also change division mode to transiently increase their population size as part of a regenerative program and, if so, what the underlying mechanism is have remained largely unexplored. Here we sh...
متن کاملAll muscle satellite cells are equal, but are some more equal than others?
Skeletal muscle is an accessible adult stem-cell model in which differentiated myofibres are maintained and repaired by a self-renewing stem-cell compartment. These resident stem cells, which are known as satellite cells, lie on the surface of the muscle fibre, between the plasmalemma and overlying basal lamina. Although they are normally mitotically quiescent in adult muscle, satellite cells c...
متن کاملA fine balance: epigenetic control of cellular quiescence by the tumor suppressor PRDM2/RIZ at a bivalent domain in the cyclin a gene
Adult stem cell quiescence is critical to ensure regeneration while minimizing tumorigenesis. Epigenetic regulation contributes to cell cycle control and differentiation, but few regulators of the chromatin state in quiescent cells are known. Here we report that the tumor suppressor PRDM2/RIZ, an H3K9 methyltransferase, is enriched in quiescent muscle stem cells in vivo and controls reversible ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2010